FTBx-88480

KOMPAKTER DUAL-PORT-FELDTESTER FÜR 400G

Flexibelste und zukunftssichere Dual-Port-Lösung von 1G bis 400G für Labor- und Feldanwendungen mit Unterstützung aktueller und Next-Gen Steckmodule.

i ptics

LEISTUNGSMERKMALE UND VORTEILE

Ethernet-Tests von 1G bis 400G gemäß IEEE-Normen.

Doppelte Geschwindigkeit: Tests an zwei Strecken gleichzeitig mit Dual-Port-Tests bei 1G bis 400G.

Vollständiges Ethernet-Testpaket von 1G bis 400G, einschließlich EtherBERT, RFC 2544, EtherSAM Y.1564, Smart Loopback, Dual-Port-Verkehrsgenerierung und -Überwachung.

Technisch führendes Open Transceiver System (OTS) für volle Flexibilität bei aktuellen und zukünftigen Transceivern.

64G Fibre Channel Tests ermöglichen die Prüfung neuer Switche und Transceiver auf Funktion und Zuverlässigkeit. Flexible Lösung mit beispielloser Unterstützung aktueller SFP-DD-/QSFP-DD-Schnittstellen sowie Technologien der nächsten Generation, darunter digitaler kohärenter Optik, wie 400G ZR und Open ZR+. **NEU:** auch **QSFP112** werden unterstützt.

Kompatibel zur portablen Plattform FTB-1 Pro zum Aufbau der kompaktesten 400G Dual-Port-Testlösung für den Übergang vom Labor in den Feldeinsatz.

Schnelle Validierung optischer Transceiver und Statusprüfung mit iOptics, der intelligenten Testanwendung für optische Steckmodule.

Pre-Emphasis und Rx-Entzerrung zur Veränderung der Signalform für die optimierte Darstellung des Augendiagramms.

VERWANDTE PRODUKTE UND ZUBEHÖR

Plattform FTB-1v2 HPDC

Rack-Plattform LTB-8

Plattform FTB-2 Pro

Plattform FTB-4 Pro

überreicht durch: Opternus GmbH • Bahnhofstraße 5 • 22941 Bargteheide | Tel.: +49 (0) 4532 20 44 - 0 | info@opternus.de | www.opternus.de

400G AUF DEM WEG IN DEN FELDEINSATZ

Die Planer von Netzwerkinfrastrukturen sind mit einer rasant ansteigenden Bandbreiten-Nachfrage, darunter für das Zusammenschalten von Rechenzentren (Data Center Interconnect, DCI) und sogar in Kern- und Metronetzen, konfrontiert. Serviceprovider und Hyperscale-Anbieter bauen ihre Netze weiter aus. Sie sind auf der Suche nach effizienteren und kostengünstigeren Methoden zur Bereitstellung ihrer Highspeed-Strecken und für den Übergang zu noch höheren Datenraten. Highspeed-Transceiver-Steckmodule werden immer kleiner und verbrauchen weniger Strom, um die preiswerte Bereitstellung einer hohen Portdichte zu ermöglichen. Aus diesem Grund sind die Betriebsteams und Servicetechniker an zukunftssicheren Testlösungen interessiert, die sowohl die aktuellen wie auch die zukünftigen Highspeed-Transceiver-Technologien sofort bei deren Einführung unterstützen.

Auch wenn der Übergang von 100G zu 400G unvermeidbar ist, sind hier aufgrund der hohen Komplexität ganz spezielle Herausforderungen zu bewältigen. Diese besonderen Anforderungen gelten sowohl für Rechenzentren wie auch für Metro- und Kern-/Backbone-Netze. Der Tester FTBx-88480 ermöglicht dem Servicetechniker im Feldeinsatz, nahtlos und professionell zwischen verschiedenen Datenraten, Schnittstellen und Technologien zu wechseln.

DOPPELTE GESCHWINDIGKEIT MIT DUAL-PORT-TESTS

Die Möglichkeit, zwei 400G-Ports, einschließlich 1G, 100G, 200G und mehr, gleichzeitig zu testen, bedeutet, dass die Techniker jeden Tag mehr Aufträge abschließen können. Angesichts der großen Anzahl von Ports, ist eine schnelle und präzise Testausführung unverzichtbar. Zudem ermöglichen Dual-Port-Tests dem Techniker, Haupt- und Reservestrecken gleichzeitig unter den gleichen Bedingungen zu überprüfen. Damit verringert sich der Zeitaufwand für die Messungen, während das Risiko von Ausfällen im Netzwerk sinkt.

KOMPATIBEL ZU PORTABLEN UND RACK-PLATTFORMEN

Das Modul FTBx-88480 stellt ein lückenloses Testpaket für das 400G-Ökosystem zur Verfügung. Damit berücksichtigt es die Anforderungen früher Anwender für die Überführung innovativer Tests vom Labor in den Feldeinsatz. Wenn auf Portabilität Wert gelegt wird, kann das Modul FTBx-88480 zudem mühelos in die Plattform FTB-1 Pro eingesetzt werden. Weiterhin bietet sich dieser Tester für Rack-Anwendungen an, wobei die leistungsstarke rackbasierte Plattform LTB-8 nicht nur 1, sondern gleich vier Module aufnehmen kann, um bis zu 3,2 Tbit/s Ethernet-Verkehr bereitzustellen. Die für den Rackeinbau entwickelte Plattform LTB-8 bietet dem Anwender ein Mehr an Vielseitigkeit und Leistung für die Validierung in einer Laborumgebung.

FLEXIBILITÄT ALS DESIGNANFORDERUNG

Das OTS-Design ermöglicht eine verbesserte Flexibilität und den Schutz der Investitionskosten (Capex) des Endnutzers, da ein Testmodul mehrere unterschiedliche Transceiver-Typen unterstützt. Diese flexible Lösung kann sich an das hohe Entwicklungstempo der Transceiver anpassen und berücksichtigt mehrere Datenraten.

- 2 x QSFP-DD Ports für 400G/200G/100G Ethernet-Raten sowie kohärente Optik
- 2 SFP-DD Port für SFP28/SFP56
- 3 SMA-Ausgangsbuchse (REF CLOCK OUT) für Referenztakt
- 4 SMB-Buchse zur Synchronisation (Eingang: 1 PPS, 10 MHz oder 2 MHz)
- 5 Integriertes GNSS/GPS: SMA, SMB (ext. Takt und 1 PPS)
- 6 OTS-Modulschacht für SFP28, QSFP28, CFP4

MULTIPORT-AUSSTATTUNG

FTB-1 Pro High-Power Dual-Carrier (HPDC)

Diese leistungsstarke Dual-Carrier-Konfiguration ist die flexibelste Ausführung der Plattform FTB-1 Pro, da sie es erlaubt, zwei 400G-Ports gleichzeitig zu testen. Mit Funktionen, die speziell für die heutigen Anforderungen der Servicetechniker integriert wurden, ist diese Plattform ideal für den Feldeinsatz geeignet.

Plattform LTB-8 für den Rackeinbau

Die leistungsstarke und skalierbare Plattform LTB-8 für den Rackeinbau bietet acht Modulschächte und wurde für anspruchsvolle Anwendungen im Labor und in der Produktion entwickelt. Da 4 Testmodule FTBx-88480 unterstützt werden, ist es möglich, **8 x 400G-Ports gleichzeitig** zu testen.

Zudem ist das FTBx-88480 mit anderen branchenführenden Tools, wie OSA, optische Schalter und variable Abschwächer, zu einem vollwertigen Paket erweiterter Testlösungen kombinierbar.

SCHNELLE TRANSCEIVER-ENTWICKLUNG

Die große Vielzahl unterschiedlicher Transceiver-Steckmodule sowie die hohe Geschwindigkeit, mit der neu entwickelte Modelle auf dem Markt eingeführt werden, stellt die Telekommunikationsindustrie vor große Herausforderungen. Das betrifft sowohl Gerätehersteller, die mit diesem Tempo Schritt halten müssen, als auch Netzbetreiber und Rechenzentren, die die neuen Transceiver in ihre Netzwerke integrieren müssen.

Daher hat EXFO sein neues Testmodul FTBx-88480 mit dem innovativen OTS-System ausgestattet. Diese Technologie versetzt die Anwender in die Lage, die für das Modul benötigten Schnittstellen bedarfsgerecht und ohne Adapter anzupassen. Gleichzeitig ist damit die Zukunftssicherheit gewährleistet, da neue Transceiver sofort nach ihrem Erscheinen auf dem Markt getestet werden können. Hierfür muss lediglich das Transceiver-System gewechselt werden, ohne dass ein neuer Tester erforderlich ist.

OPEN TRANSCEIVER SYSTEM (OTS)		UNTERSTÜTZTE SCHNITTSTELLEN	LEISTUNGSMERKMALE	ANZAHL DER TEST-PORTS
	SFP28	SFP, SFP+, einstellbare SFP+, SFP28, SFP+ und bidirektionale SFP	Datenraten von 10M bis 25G, Dual-Port-Funktion	2
	QSFP28	QSFP+, QSFP28	Datenraten 40G/50G/100G, Dual-Port-Funktion, AOC-Kabel	2
ES.	CFP4	CFP4, SMA (REF OUT)	Datenrate 100G Ref-Ausgang für Augendiagramm-Analyse	1

EtherBERT

HIGHSPEED-ETHERNET-TESTS

400G Ethernet ist der vielversprechende Ersatz für 100G Ethernet. Da die Industrie große Anstrengungen unternimmt, um die massive Nachfrage von Hyperscale-Rechenzentren, 5G-Anwendungen, Serviceprovidern und Geschäftskunden erfüllen zu können, wird 400G schrittweise in die Praxis überführt. Das FTBx-88480 bietet erweiterte Ethernet-Testfunktionen, einschließlich der Überwachung und Prüfung der Vorwärtsfehlerkorrektur (FEC).

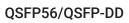
BER-Tests (gerahmt/ungerahmt) bei 1G bis 400G

- · Test der MAC PCS-, PMA-, PMD-Layer bei 1G bis 400G
- Decodierung und Fehlerkorrektur von FEC RS (544, 514) bei 400G/200G
- Überwachung der Testmuster
- · Lese-/Schreibzugriff für alle MDIO/I2C-Schnittstellen
- · Generierung und Überwachung von Alarmen/Fehlern
- PRBS-Tests (ungerahmt) pro Lane mit Pass/Fail-Bewertung
- CMIS-Unterstützung mit Schleifentest (Loopback)

BER-Test (ungerahmt)

Erweiterte Testfunktionen

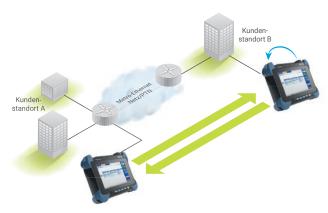
- · Skew-Messung pro Lane
- FEC-Test
- BER-Überwachung
- Erweiterte Fehleranalyse
- SDT-Messung
- · Ethernet-Verkehrsfilter
- BER-Test (ungerahmt), einschließlich PRBS31Q, PRBS13Q und SSPRQ)
- Pre-Emphasis und Rx-Entzerrung zur Veränderung der Signalform für eine bessere Augenöffnung
- · Konfiguration von Host und Medien



iOptics ist eine intelligente Testanwendung für optische Steckmodule und Erst-Alarme, die im Feldeinsatz oder im Labor genutzt werden kann, um mit minimalem Konfigurationswand die einwandfreie Funktion einer optischen Schnittstelle nachzuweisen. Mit Hilfe verschiedener Teiltests überprüft iOptics die Steckmodule, überwacht den Stromverbrauch sowie die Temperatur und gibt für jeden Teiltest und die Überwachung eine separate Bewertung aus. iOptics unterstützt die neuesten Highspeed-Transceiver von 1G bis 400G sowie AOC- und DAC-Kabel. Auch bietet die Testanwendung nun Loopback-Einstellungen zur internen Fehlereingrenzung an Transceivern.

SFP/SFP+/SFP28

QSFP+/QSFP28


RFC 2544

Mit der Überführung von 400G vom Labor in das Feld (die ersten 400G-Bereitstellungen stehen kurz bevor), kommt es darauf an, die Dienstgüte (QoS) bei der Inbetriebnahme sicherzustellen. Portable Tester für 1G bis 400G versetzen die Servicetechniker und Dienstleister in die Lage, die Testergebnisse sofort zu erfassen und nachzuweisen, dass die Ethernet-Dienste die Vorgaben der Dienstgütevereinbarung (SLA) einhalten. Zudem können diese Tests als Ausgangswerte (Baseline) für einen späteren Leistungsvergleich dienen.

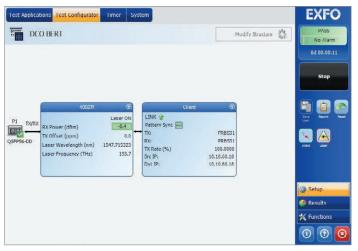
Für Labore und Benchmarking-Anwendungen sind Tests nach RFC 2544 am besten für automatische Messungen und Berichte geeignet. Bei der Einrichtung von Diensten und der Fehlerdiagnose bietet RFC 2544 eine Benchmarking-Methode für Außerbetriebsmessungen (Out-of-Service) an. In diesem Kontext ist es möglich, die Leistung des Netzwerks/Gerätes mit vier Teiltests und bis zu 10 konfigurierbaren Frame-Größen zu beurteilen und dabei jeweils spezifische SLA-Anforderungen zu berücksichtigen. RFC 2544 stellt den Ingenieuren und Netzwerktechnikern eine gemeinsame Sprache und ein einheitliches Ergebnisformat zur Verfügung.

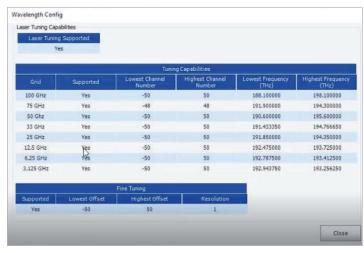
RFC 2544 umfasst die folgenden Teiltests:

- 1 Durchsatz
- 2 Back-to-Back (Burstfähigkeit)
- 3 Frame-Verlust
- 4 Latenz

SMART LOOPBACK

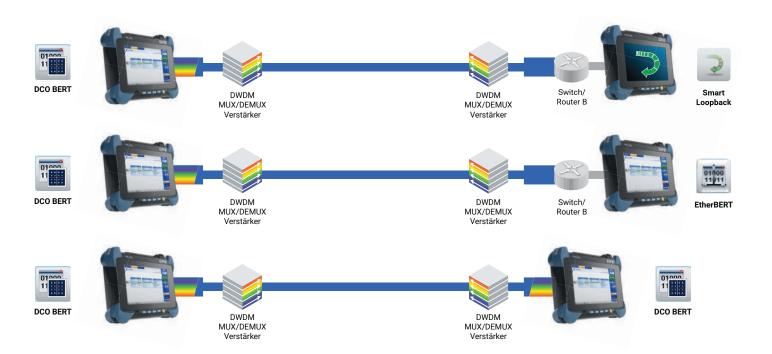
Die Smart-Loopback-Funktion von EXFO ist dahingehend beispiellos, dass sie es ermöglicht, den Ethernet-Verkehr bei allen Datenraten ausgehend von der UDP- oder TCP-Schicht oder auch im Promiscuous Modus (Transport-Loopback) zurückzuschleifen. Die Module können sich an alle Loopback-Situationen anpassen, bei denen das Gerät am fernen Ende den Verkehr zum lokalen Geräte zurückführt, indem es den Paket-Overhead bis zur Layer 4 des OSI-Schichtenmodells tauscht.




DCO-STECKMODULE

Der OIF-MSA-Standard hat neue WDM-Schnittstellen eingeführt, die digitale kohärente Optik (DCO) nutzen. Am weitesten verbreitet sind OIF 400ZR und OpenZR+. Diese Transceiver werden für optimale Verbindungen beim Zusammenschalten von Rechenzentren (DCI) und für Metro-Anwendungen genutzt und unterstützen Langstreckenverbindungen (siehe untenstehende Abbildung mit Testkonfigurationen). 100G, 200G, 300G und 400G sind die am weitesten verbreiteten Datenraten für diese Transceiver.

Das FTBx-88480 von EXFO bietet unter anderem diese erweiterten DCO-Funktionen:


- · Konfigurierbare Tx-Leistung
- · Konfigurierbare Wellenlänge
- Anzeige optischer Kennwerte der Steckmodule (beispielsweise CD und OSNR)
- · Konfigurierbarer Client von L2 bis L4 bei 400G
- Rx FEC-Alarm- und Fehlerüberwachung für die Medien

DCO BERT-Generierung und -Analyse

Wellenlängen-Abstimmung

GENERIERUNG UND ÜBERWACHUNG VON ETHERNET-VERKEHR

Über Highspeed-Netze übertragende Datendienste werden für immer mehr unterschiedliche Anwendungen genutzt. Multiservice-Angebote, wie Triple-Play-Dienste, unterstreichen die Notwendigkeit von QoS-Tests, um den einwandfreien Zustand und die Zuverlässigkeit jedes einzelnen Dienstes sicherzustellen und die SLA-Parameter nachzuweisen. Mit der Generierung und Überwachung von Ethernet-Verkehr erlauben diese Highspeed-Module den Serviceprovidern, unterschiedliche Anwendungen gleichzeitig zu simulieren und zu qualifizieren. So ist es möglich, bis zu 16 Verkehrsströme mit unterschiedlichen Ethernet- und IP QoS-Parametern, wie VLAN ID (802.1Q), VLAN-Priority (802.1p), VLAN-Stacking (802.1ad Q-in-Q), ToS und DSCP, zu konfigurieren.

True to take the take

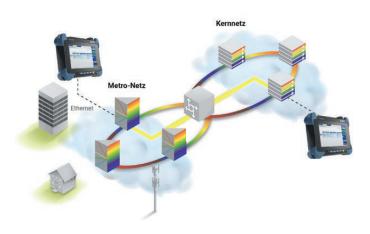
Darüber hinaus unterstützen die Module mit Hilfe der Traffic-Scan-Funktion die Überwachung mehrerer VLAN-Ströme. Ebenso steht eine MAC-Flooding-Funktion zum Testen von Switch-

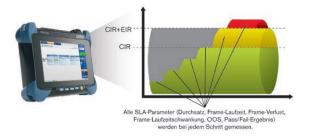
adressierbaren Speichern zur Verfügung. Hier kann durch den gesamten MAC-Adressbereich geschaltet werden, so dass der Switch gezwungen ist, jede einzelne Adresse zu lernen. Die Module erlauben, ein Konfigurationsprofil zu definieren und es auf die benötigte Anzahl von Verkehrsströmen anzuwenden. Dann ist es nicht mehr schwer, sie an die einzelnen Ströme anzupassen. Auch messen sie gleichzeitig Durchsatz, Latenz, Paket-Jitter (RFC 3393), Frame-Verlust, Out-of-Sequence-Fehler (OOS) an allen Verkehrsströmen, so dass eine schnelle und tiefgehende Qualifizierung aller SLA-Kriterien gewährleistet ist. Die Ergebnisse werden im Tabellenformat und in Form analoger Anzeigen dargestellt, damit die Resultate der Tests auf einen Blick erkennbar sind.

ETHERSAM: AKTIVIERUNG VON ETHERNET-DIENSTEN NACH ITU-T Y.1564

Da immer mehr Ethernet-Dienste eingeführt werden, berücksichtigt die Norm ITU-T Y.1564 die wachsende Nachfrage nach der Inbetriebnahme und Fehlerdiagnose von Carrier-Ethernet-Diensten. Die Power Blazer Module unterstützen Ethernet Client-Dienste, darunter die Validierung kritischer SLA-Kriterien, wie die Messung von Paket-Jitter und Dienstgüte (QoS), sowie eine schnellere Inbetriebnahme (Time-to-Service). Das EtherSAM Testpaket von EXFO basiert auf der Norm ITU-T Y.1564 zur Aktivierung von Ethernet-Diensten und stellt umfassende Feldtests für Mobile Backhaul sowie für kommerzielle Dienste zur Verfügung. EtherSAM kann alle Arten von Diensten, die über das Netzwerk übertragen werden, simulieren und gleichzeitig für jeden dieser Dienste alle wichtigen SLA-Parameter qualifizieren.

Darüber hinaus wird der QoS-Mechanismus geprüft, der im Netzwerk zur Priorisierung der verschiedenen Diensttypen eingerichtet wurde. Diese Vorgehensweise verbessert die Fehlerdiagnose, erhöht die Genauigkeit der Validierung und ermöglicht eine viel schnelle Bereitstellung. EtherSAM umfasst diese beiden Phasen:


- 1. Konfigurationstest des Dienstes
- 2. Leistungstest des Dienstes


Konfigurationstest des Dienstes

Bei diesem Konfigurationstest wird jeder Dienst nacheinander überprüft. Dazu gehören die korrekte Bereitstellung des Dienstes und die Einhaltung alle kritischen Leistungskennwerte (KPI) und SLA-Parameter.

Leistungstest des Dienstes

Nach der Kontrolle der Konfiguration jedes einzelnen Dienstes überprüft der Leistungstest gleichzeitig die Dienstgüte aller Dienste im Zeitverlauf. EtherSAM geht sogar noch weiter und führt den vollständigen Test nach ITU-T Y.1564 bidirektional aus. Für jede Testrichtung werden die wichtigsten SLA-Parameter gemessen, so dass es möglich ist, 100 % der Dienste gleich beim ersten Mal fehlerfrei zu aktivieren. Damit wird das höchste Vertrauensniveau beim Testen von Diensten erreicht.

überreicht durch: Opternus GmbH · Bahnhofstraße 5 · 22941 Bargteheide | Tel.: +49 (0) 4532 20 44 - 0 | info@opternus.de | www.opternus.de

SOFTWARE-TESTTOOLS

Diese plattformbasierten Software-Tools erhöhen den Wert der Plattformen FTB-1v2, FTB-2 Pro, FTB-4 Pro und LTB-8, da sie zusätzliche Überwachungs- und Testfunktionen zur Verfügung stellen.

Connector Max

ConnectorMax2 ist eine leistungsstarke plattformbasierte Anwendung zur automatischen visuellen Inspektion der Glasfaser. Dieses Tool gibt in kürzester Zeit eine aussagekräftige Pass/Fail-Bewertung der Faserendflächen aus und spart Zeit und Geld sowohl im Labor als auch im Feldeinsatz.

≝Fernsteuerung

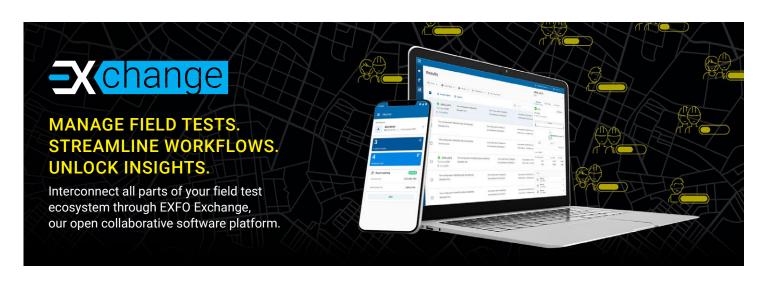
Das Windows-basierte Design ermöglicht die Fernsteuerung mit TeamViewer, Remote Desktop (RDP), Virtual Network Computing (VNC), Microsoft Teams und der kostenlosen Remote-Software EXFO Remote Toolbox für:

- · die Fernausführung von Tests und Bewertungen.
- den mühelosen Fernzugriff durch Anschluss an ein kabelgebundenes/kabelloses Ethernet-Netzwerk/Hotspot, ohne dass eine Verbindung zum Kundennetz aufgebaut werden muss.
- die Ausführung automatisierter Aufgaben mit SCPI und Python in einer automatischen Testumgebung.

TECHNISCHE DATEN

ABMESSUNGEN, GEWICHT, TEMPERATUR		
Abmessungen	(H x B x T)	51 mm x 159 mm x 187 mm
Gewicht		0,85 kg
Temperatur	Betrieb Lagerung	0 °C bis 40 °C -40 ° bis to 70 °C

REF-OUT-ANSCHLUSS	
Tx-Pulsamplitude	200 mVpp bis 1300 mVpp, frequenzabhängig
Übertragungsfrequenz	155 MHz bis 3,50 GHz
Konfiguration des Ausgangs	AC-Kopplung
Lastimpedanz	50 Ω
Anschlusstyp	SMA
Externes Kabel	Max. 1 Meter (RG178-Kabel mit 3,1 dB/m Dämpfung bei 3,5 GHz)


LASERSICHERHEIT

Modul: Die mit dem Modul verwendete Plattform ist möglicherweise für eine andere Laserklasse ausgelegt. Bitte schlagen Sie in der Dokumentation der Plattform nach.

KEY BENEFITS

Connect operations with real-time visibility

Increase collaboration and build trust with business partners

Boost efficiency with automated processes

Reduce maintenance costs

Unlock insights to see what matters

From the office

Invite your workforce and contractors to join your organization's workspace on EXFO Exchange. This will help you better organize projects and gain unprecedented visibility in real time over job progress and MoP compliance. Optimize closeout package generation to close jobs rapidly and monetize/get paid faster.

From the field

Request an invitation from your team manager to complete jobs faster and better, save results automatically and share them in real time.

KEY FEATURES

Centralized and organized data

Easy integration

Consolidated reporting service

Process automation

Collaboration

überreicht durch: Opternus GmbH · Bahnhofstraße 5 · 22941 Bargteheide | Tel.: +49 (0) 4532 20 44 - 0 | info@opternus.de | www.opternus.de

Detailleter Konformilatisprüfung Gemäß LEEE BÜZ 3bu und IEEE BÜZ 3bu u	DIE WICHTIGSTEN LEISTUNGS	SMERKMALE AUF EINEN BLICK
Unterstützung mehrere SPR MSA Management Interfaces Specification version 2. (RISGs) SSPHOUR MSA Revision 4.0, 28.50G und 4.x 100G Robuste Validierung der Bitibertragungsschicht (Physical Layer) Robuste Validierung der Bitibertragungsschicht (Physical Layer) SSPHOUR AUR JOHN JOHN MSA Revision 4.00G und 1.0 Geneterung und Überwechung von 4.00G und 1.0 Geneterung und JOHN MSA Revision 4.0 Geneterung und JOHN MSA Revisi	Detaillierte Konformitätsprüfung	Gemäß IEEE 802.3ba und IEEE 802.3bs.
Robuste Validierung der Brübertragungsschicht (Physical Layer) Generierung und Überwachung von 4006AUI Lane-Fehlern PCS Lane-Mäßping und Überwachung Brübertragungsschicht (Physical Layer) Voller Leser (Schreibzugriff auf Möhlo/IZO Schnrittstelle Transceiver-/Kabel-Validierung SPP, SPP-R, SPP28, QSFP-R, QSFP26, QSFP-DD, QSFP112 Schneillest der EI-A-Schnittstelle des optisches Geräts Test des optischen Trk-Leistungspeglist Eret des optischen Trk-Leistungspeglist Eret des optischen Trk-Leistungspeglist Test auf Vollegen des optischen Rx-Signals mit Pegelmessung Brügernessung Leistungsmessung Leistungsmessung am optischen Kanal mit Farbindikatoren pro Lane Frequerznessungen Messung der empfangen Frequenz pro Weilenlange (in 12) in der verwendeten parallelen Optik Frequerznessungen Messung der sempfangen Frequenz pro Weilenlange (in 12) in der verwendeten parallelen Optik Frequenzoffset Askversetzung des gesendeten Signals an einer ausgewählten Schnittstelle mit Überwachung Mon-Blocking-Analyse am Transceiver BERT BER-Test (gerahmt/ungerahmty) mit unterschiedlichen Parametern und Frame-Größen, einschließlich EMIX Messung der Service Disruption Time (SDT) mit Angabe von: Kein Verkehr Mödulus, mit Statistik, einschließlich allagsfer, Kürzector, Letzte, mittlerer, Anzahl, Gesamt-Unterbrechungszet sowie Pass/Fail-Schwellwerte Beherreinfüge Modus Mac-Aricesse und EtherType-Edition Qrin Q-Finiktion über 3 Layer im Stacked VLAN Layer 3/4 Mac-Aricesse und EtherType-Edition Qrin Q-Finiktion über 3 Layer im Stacked VLAN Vereinfachter ITU-T 7.156.4 Test der Konfiguration und Leistung der Dienste mit Remote Loopback oder im Dual- Tester-Modus (Drie Gerinktion und Ziel-Ports Konfiguration der Plouglei- und Ziel-Ports Konfiguration der UP-Quell- und Ziel-Ports Konfiguration der UP-Quell- und Zielerbens Vereinkspenerierung und Traffic-Shaping von Mac-Veuder in Ziel-Ports Konfiguration von ibr 100/SDP Konfiguration von ibr 100/SDP Konfiguration von ibr 100/SDP Konfiguration von ibr 100/SDP Konfiguration von		Unterstützung von QSFP28/QSFP-DD AOC-Kabel, auch QSFP112 CFP MSA Management Interface Specification Version 2.6 (R06a) QSFP-DD MSA Revision 4.0, 8 x 50G und 4 x 100G Unterstützung von 400G DAC-Kabeln MSA-konforme QSFP+ Transceiver-Steckmodule MSA-konforme SFP28 Transceiver-Steckmodule
Röbuste Validierung der PCS Lane-Mapping und -Überwachung Sikew-Generierung und -Wesung pro Lane PCSF-einlergenerierung und -Überwachung pro Lane PCSF-einlergenerierung und -Überwachung pro Lane PCSF-einlergenerierung und -Überwachung pro Lane Voller Lesey-Scheriebzugniff auf MiO/IZC Schnittstelle Transceiver-/Kabel-Validierung SFP, SFP+, SFP28, QSFP+, QSFP28, QSFP-D0, QSFP-D0, QSFP-D12 Löher Lese Scheriebzugniff auf MiO/IZC Schnittstelle des optischen Schrittstelle des optischen Rx-Signals mit Pegelmessung Belatungstes Test auf Vorliegen des optischen Rx-Signals mit Pegelmessung Belatungstes Uberwachung von Temperatur und Stromwerbrauch Holst- und Medien-Loopback Wiesen Schweibung von Temperatur und Stromwerbrauch Holst- und Medien-Loopback Deutschwachten Personal Prequenzmessungen Messung der empfangen Frequenz pro Wellenlänge (in Hz) in der verwendeten parallelen Optik Frequenzoffset Taktversetzung des gesendeten Signals an einer ausgewählten Schnittstelle mit Überwachung Nor-Blocking-Analyse am Transceivers BERT Elestungsmessung der BER-Test (gerahmt/ungerahmt) mit unterschiedlichen Parametern und Frame-Größen, einschließlich EMIX Dienstunterbrechungszeit (SDT) Messung der Service Disruption Time (SDT) mit Angabe von: Kein Verlehr, Modus, mit Statistik, einschließlich längster, kürzester, leitzere, mittlerer, Anzahl, Gesamt-Unterbrechungszeit sowie Pass/Fail-Schwellwerte Latenzmessung beim BER-Test Höchsunfüssend Laufzeitmessungen beim BER-Test mit Statistik, einschließlich aktueller, mittlerer, maximaler, minimaler, Anzahl, Gesamt-BER sowie Pass/Fail-Schwellwerte Latenzmessung beim BER-Test Möchünger von der Ehropher Schriftlich (maximale Rate)	Leitungsrate	
Schneiltest der E/A-Schnittstelle des optisches Geräts Test auf Vorliegen des optischen Rx-Signals mit Pepelmessung Belastungstess Test auf Vorlingen des optischen Rx-Signals mit Pepelmessung Belastungstess Test auf Varingen des optischen Rx-Signals mit Pepelmessung Belastungstess der Stew Test auf zu hohen Skew Test der Stempt Skew Test des Stempt Skew Test de	Bitübertragungsschicht	PCS Lane-Mapping und -Überwachung Skew-Generierung und -Messung pro Lane PCS-Fehlergenerierung und -Überwachung pro Lane
lioptics select des optischen Tx-Leistungspegels least ung steet feat suf Vorliegen des optischen Rx-Signals mit Pegelmessung selectures de least ungsteet frest auf vun hen Skew blewachung von Temperatur und Stromverbrauch host- und Medien-Loopback Leistungsmessung 1 Leistungsmessung am optischen Kanal mit Farbindikatoren pro Lane Frequenzmessungen 1 Messung der empfangen Frequenz pro Wellenlänge (in Hz) in der verwendeten parallelen Optik 1 Taktversetzung des gesendeten Signals an einer ausgewählten Schnittstelle mit Überwachung 1 Taktversetzung des gesendeten Signals an einer ausgewählten Schnittstelle mit Überwachung 1 Taktversetzung des gesendeten Signals an einer ausgewählten Schnittstelle mit Überwachung 1 Taktversetzung des gesendeten Signals an einer ausgewählten Schnittstelle mit Überwachung 1 Taktversetzung der Service Disruption Time (SDT) mit Angabe vont Kein Verkehr, Modus, mit Statistik, einschließlich EMIX 1 Taktversetzung des gesendeten Signals an einer ausgewählten Schnittstelle mit Überwachung 1 Taktversetzung 1 Taktversetzung des Service Disruption Time (SDT) mit Angabe vont Kein Verkehr, Modus, mit Statistik, einschließlich BMIX 1 Taktversetzung beim BER Test mit Statistik, einschließlich aktueller, mittlerer, maximaler, mitmlerer, maximaler, part mitmlerer, maximaler, mitmlerer, maximaler, part m	Transceiver-/Kabel-Validierung	SFP, SFP+, SFP28, QSFP+, QSFP28, QSFP56, QSFP-DD, QSFP112
Frequenzmessungen Messung der empfangen Frequenz pro Wellenlänge (in Hz) in der verwendeten parallelen Optik Frequenzoffset Taktversetzung des gesendeten Signals an einer ausgewählten Schnittstelle mit Überwachung Non-Blocking-Analyse am Transceivers Zur schrittweisen Überwachung der Boot-Sequenz des Transceivers BERT BER-Test (gerahmt/ungerahmt) mit unterschiedlichen Parametern und Frame-Größen, einschließlich EMIX Dienstunterbrechungszeit (SDT) Messung der Service Disruption Time (SDT) mit Angabe von: Kein Verkehr, Modus, mit Statistik, einschließlich längster, kürzeister, letzter, mittlerer, Anzahl, Gesamt-Unterbrechungszeit sowie Pass/Fail-Schwellwerte Latenzmessung beim BER-Test Hochauflösende Laufzeitmessungen beim BER-Test mit Statistik, einschließlich aktueller, mittlerer, maximaler, niminaler, Anzahl, Gesamt-BER sowie Pass/Fail-Schwellwerte Fehlereinfüge-Modus Manuell, Rate und kontinuierlich (maximale Rate) Layer 2 Mac Adresse und EtherType-Edition On-G-Funktion über 3 Layer im Stacked VLAN RFC 2544 Sonfiguration der IP-Quell- und Zieladresse Konfiguration aus IP Tots/DSP Konfiguration der UP-Quell- und Zieladresse RFC 2544 Durchsatz, Back-to-Back, Frame-Verlust und hochauflösende Latenzmessungen gemäß RFC 2544 Frame-Größe. RFC-definiert oder vom Anwender konfigurierbar Verkehrsgenerierung und der Verkehrsgenerierung und Traffic-Shaping von bis zu 16 Ethemet- und IP-Verkehrsströmen, einschließlich gleicherwachung von Durchsatz, Frame-Verlust, Paket-Jitter, La	iOptics	Test des optischen Tx-Leistungspegels Test auf Vorliegen des optischen Rx-Signals mit Pegelmessung Belastungstest Test auf zu hohen Skew Überwachung von Temperatur und Stromverbrauch
Frequenzoffset Taktversetzung des gesendeten Signals an einer ausgewählten Schnittstelle mit Überwachung Non-Blocking-Analyse am Transceiver Zur schrittweisen Überwachung der Boot-Sequenz des Transceivers BERT BER-Test (gerahmt/ungerahmt) mit unterschiedlichen Parametern und Frame-Größen, einschließlich EMIX Dienstunterbrechungszeit (SDT) Messung der Service Disruption Time (SDT) mit Angabe von: Kein Verkehr, Modus, mit Statistik, einschließlich längster, kürzester, letzter, mittlerer, Anzahl, Gesamt-Unterbrechungszeit sowie Pass/Fail-Schwellwerte Latenzmessung beim BER-Test Hochauflösende Laufzeitmessungen beim BER-Test mit Statistik, einschließlich aktueiller, mittlerer, maximaler, minimaler, Anzahl, Gesamt-BER sowie Pass/Fail-Schwellwerte Fehlereinfüge-Modus Manuell, Rate und kontinuierlich (maximale Rate) Layer 2 MAC-Adresse und EtherType-Edition Q-in-Q-Funktion über 3 Layer im Stacked VLAN RFC 2544 Konfüguration der IP-Quell- und Ziel-Ports Konfüguration von IP TOS/DSP Konfüguration von IP TOS/DSP Konfüguration von Anwender konfügurierbar Vereinschlicßlich gerüher Verkehrsgenerierung und Ziel-Ports vom Anwender konfügurierbar EtherSAM Vereinfachter ITU-T Y.1564 Test der Konfüguration und Leistung der Dienste mit Remote Loopback oder im Dual-Tester-Modus für bidirektionale Ergebnisse Bmart loopback Rückführung des Ethernet-Verkehrs zum lokalen Gerät durch Tauschen der Paket-Overhead bis Layer 4	Leistungsmessung	Leistungsmessung am optischen Kanal mit Farbindikatoren pro Lane
Non-Blocking-Analyse am Transceiver Zur schrittweisen Überwachung der Boot-Sequenz des Transceivers BERT BER-Test (gerahmt/ungerahmt) mit unterschiedlichen Parametern und Frame-Größen, einschließlich EMIX Dienstunterbrechungszeit (SDT) Messung der Service Disruption Time (SDT) mit Angabe von: Kein Verkehr, Modus, mit Statistik, einschließlich längster, kürzester, letzter, mittlerer, Anzahl, Gesamt-Unterbrechungszeit sowie Pass/Fail-Schwellwerte Latenzmessung beim BER-Test Hochauflösende Laufzeitmessungen beim BER-Test mit Statistik, einschließlich aktueller, mittlerer, maximaler, minimaler, Anzahl, Gesamt-BER sowie Pass/Fail-Schwellwerte Fehlereinfüge-Modus Manuell, Rate und kontinuierlich (maximale Rate) Layer 2 MAC-Adresse und EtherType-Edition Q-In-Q-Funktion über 3 Layer im Stacked VLAN Layer 3/4 Konfiguration der IP-Quell- und Zieladresse Konfiguration von IP TOS/DSP Konfiguration von IP TOS/DSP Konfiguration von IP TOS/DSP Konfiguration von IP TOS/DSP Konfiguration des UDP-Quell- und Zieladresse RFC 2544 Prame-Größe: RFC-definiert oder vom Anwender konfigurierbar EthersAM Vereinfachter ITU-T Y.1564 Test der Konfiguration und Leistung der Dienste mit Remote Loopback oder im Dual-Tester-Modus für bildirektionale Ergebnisse Verkehrsgenerierung und dieberwachung von Durchsatz, Frame-Verlust, Paket-Jitter, Latenz und Out-Of-Sequence (OOS) Frames, mit MAC-Flooding von MAC-Quell- und Zieladressen Smart loopback Rückführung des Ethernet-Verkehrs zum lokalen Gerät durch T	Frequenzmessungen	Messung der empfangen Frequenz pro Wellenlänge (in Hz) in der verwendeten parallelen Optik
BERT BER-Test (gerahmt/ungerahmt) mit unterschiedlichen Parametern und Frame-Größen, einschließlich EMIX Dienstunterbrechungszeit (SDT) längster, kürzester, letzter, mittlerer, Anzahl, Gesamt-Unterbrechungszeit sowie Pass/Fali-Schwellwerte Latenzmessung beim BER-Test Hochauflösende Laufzeitmessungen beim BER-Test mit Statistik, einschließlich aktueller, mittlerer, maximaler, minimaler, Anzahl, Gesamt-BER sowie Pass/Fali-Schwellwerte Fehlereinfüge-Modus Manuell, Rate und kontinuierlich (maximale Rate) Layer 2 MAC-Adresse und EtherType-Edition Qhin-Q-Funktion über 3 Layer im Stacked VLAN Layer 3/4 Konfiguration der IP-Quell- und Zieladresse Konfiguration von IP TOS/DSP Konfiguration von IP TOS/DSP Konfiguration der UDP-Quell- und Zieladresse Konfiguration von IP TOS/DSP Konfiguration der UDP-Quell- und Zieladresse Konfiguration won IP TOS/DSP Konfiguration der UDP-Quell- und Zieladresse Konfiguration der UDP-Quell- und Zieladresse Konfiguration und Leistung der Dienste mit Remote Loopback oder im Dual- Tester-Modus für bidirektionale Ergebnisse EtherSAM Vereinfachter ITU-T V.1564 Test der Konfiguration und Leistung der Dienste mit Remote Loopback oder im Dual- Tester-Modus für bidirektionale Ergebnisse Verkehrsgenerierung und die Verkehrsgenerierung und Traffic-Shaping von bis zu 16 Ethernet- und IP-Verkehrsströmen, einschließlich gleichzeitiger Überwachung von Durchsatz, Frame-Verlust, Paket-Jitter, Latenz und Out-Of-Sequence (OOS) Frames, mit Mo-Flooding von MAC-Quell- und Zieladressen Smart loopback Rückführung des Ethernet-Verkehrs zum lokalen Gerät durch Tauschen der Paket-Overhead bis Layer 4 Analyse der Rx-Frame-Größe < 64, 65–127, 128–255, 256–511, 512–1023, 1024–1518 und > 1518 Rx-Rate Leitungsnutzung (%), Ethernet-BW (Mbit/s), Frame-Rate (Frame/s) und Frame-Zählung Ethernet-Fehler FCS, Jabber, Runt, Undersize, Oversize Fehleranalyse auf höheren Layern UDP-Prüfsumme PCS Lane-Alarme und -Fehler UDP-Prüfsumme	Frequenzoffset	Taktversetzung des gesendeten Signals an einer ausgewählten Schnittstelle mit Überwachung
Dienstunterbrechungszeit (SDT) Messung der Service Disruption Time (SDT) mit Angabe von: Kein Verkehr, Modus, mit Statistik, einschließlich längster, kürzester, letzter, mittlerer, Anzahl, Gesamt-Unterbrechungszeit sowie Pass/Fail-Schwellwerte Hochauflösende Laufzeitmessungen beim BER-Test mit Statistik, einschließlich aktueller, mittlerer, maximaler, minimaler, Anzahl, Gesamt-BER sowie Pass/Fail-Schwellwerte Fehlereinfüge-Modus Manuell, Rate und kontinuierlich (maximale Rate) Layer 2 MAC-dresse und EtherType-Edition Q-in-Q-Funktion über 3 Layer im Stacked VLAN Konfiguration der IP-Quell- und Zieladresse Konfiguration von IP TOS/DSP Konfiguration on PT TOS/DSP Konfiguration on Anwender konfigurierbar EtherSAM Vereinfachter ITU-T Y1564 Test der Konfiguration und Leistung der Dienste mit Remote Loopback oder im Dual-Tester-Modus für bidirektionale Ergebnisse Verkehrsgenerierung und -überwachung wir bidirektionale Ergebnisse Smart loopback Rückführung des Ethernet-Verkehrs zum lokalen Gerät durch Tauschen der Paket-Overhead bis Layer 4 Analyse der Rx-Frame-Größe 464, 65–127, 128–255, 256–511, 512–1023, 1024–1518 und > 1518 Rx-Rate Leitungsnutzung (%), Ethernet-BW (Mbit/s), Frame-Rate (Frame/s) und Frame-Zählung Ethernet-Alarme Link-Down, lokaler Fehler erkannt, lokaler Fehler empfangen, Remote-Fehler, LOA Ethernet-Fehler FCS, Jabber, Runt, Undersize, Oversize Fehleranalyse auf höheren Layen UDP-Prüfsumme PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit		Zur schrittweisen Überwachung der Boot-Sequenz des Transceivers
längster, kürzester, letzter, mittlerer, Anzahl, Gesamt-Unterbrechungszeit sowie Pass/Fail-Schwellwerte Latenzmessung beim BER-Test hchauflösende Laufzeitmessungen beim BER-Test mit Statistik, einschließlich aktueller, mittlerer, maximaler, minimaler, Anzahl, Gesamt-BER sowie Pass/Fail-Schwellwerte Fehlereinfüge-Modus Manuell, Rate und kontinuierlich (maximale Rate) Layer 2 MAC-Adresse und EtherType-Edition Qrin-Qr-Eunktion über 3 Layer im Stacked VLAN Layer 3/4 Konfiguration der IP-Quell- und Zieladresse Konfiguration der UDP-Quell- und Zieladresse Konfiguration des UDP-Quell- und Ziel-Ports RFC 2544 Prame-Größe: RFC-definiert oder vom Anwender konfigurierbar EtherSAM Vereinfachter ITU-T Y.1564 Test der Konfiguration und Leistung der Dienste mit Remote Loopback oder im Dual-Tester-Modus für bidirektionale Ergebnisse Verkehrsgenerierung und diechzeitiger Überwachung von Durchsatz, Frame-Verlust, Paket-Jitter, Latenz und Out-Of-Sequence (OOS) Frames, mit MAC-Flooding von MAC-Quell- und Zieladressen Smart loopback Rückführung des Ethernet-Verkehrs zum lokalen Gerät durch Tauschen der Paket-Overhead bis Layer 4 Analyse der Rx-Frame-Größe < 64, 65–127, 128–255, 256–511, 512–1023, 1024–1518 und > 1518 Rx-Rate Leitungsnutzung (%), Ethernet-BW (Mbit/s), Frame-Rate (Frame/s) und Frame-Zählung Ethernet-Alarme Link-Down, lokaler Fehler erkannt, lokaler Fehler empfangen, Remote-Fehler, LOA Ethernet-Fehler FCS, Jabber, Runt, Undersize, Oversize Fehleranalyse auf höheren Layen UDP-Prüfsumme PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	BERT	BER-Test (gerahmt/ungerahmt) mit unterschiedlichen Parametern und Frame-Größen, einschließlich EMIX
Fehlereinfüge-Modus Manuell, Rate und kontinuierlich (maximale Rate) Layer 2 MAC-Adresse und EtherType-Edition Q-in-Q-Funktion über 3 Layer im Stacked VLAN Layer 3/4 Konfiguration der IP-Quell- und Zieladresse Konfiguration der IP-Quell- und Zieladresse Konfiguration des UDP-Quell- und Ziel-Ports RFC 2544 Durchsatz, Back-to-Back, Frame-Verlust und hochauflösende Latenzmessungen gemäß RFC 2544 Frame-Größe: RFC-definiert oder vom Anwender konfigurierbar EtherSAM Vereinfachter ITU-T Y.1564 Test der Konfiguration und Leistung der Dienste mit Remote Loopback oder im Dual-Tester-Modus für bidirektionale Ergebnisse Verkehrsgenerierung und - Verkehrsgenerierung und Traffic-Shaping von bis zu 16 Ethernet- und IP-Verkehrsströmen, einschließlich gleichzeitiger Überwachung von Durchsatz, Frame-Verlust, Paket-Jitter, Latenz und Out-Of-Sequence (OOS) Frames, mit MAC-Flooding von MAC-Quell- und Zieladressen Smart loopback Rückführung des Ethernet-Verkehrs zum lokalen Gerät durch Tauschen der Paket-Overhead bis Layer 4 Analyse der Rx-Frame-Größe <64, 65–127, 128–255, 256–511, 512–1023, 1024–1518 und > 1518 Rx-Rate Leitungsnutzung (%), Ethernet-BW (Mbit/s), Frame-Rate (Frame/s) und Frame-Zählung Ethernet-Alarme Link-Down, lokaler Fehler erkannt, lokaler Fehler empfangen, Remote-Fehler, LOA Ethernet-Fehler FCS, Jabber, Runt, Undersize, Oversize Fehleranalyse auf höheren Layem UDP-Prüfsumme PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	Dienstunterbrechungszeit (SDT)	
Layer 2 MAC-Adresse und EtherType-Edition Q-in-Q-Funktion über 3 Layer im Stacked VLAN Konfiguration der IP-Quell- und Zieladresse Konfiguration von IP TOS/DSP RFC 2544 RFC 2544 Durchsatz, Back-to-Back, Frame-Verlust und hochauflösende Latenzmessungen gemäß RFC 2544 EtherSAM Vereinfachter ITU-T Y.1564 Test der Konfiguration und Leistung der Dienste mit Remote Loopback oder im Dual-Tester-Modus für bidirektionale Ergebnisse Verkehrsgenerierung und - überwachung Verkehrsgenerierung und Traffic-Shaping von bis zu 16 Ethernet- und IP-Verkehrsströmen, einschließlich gleichzeitiger Überwachung von Durchsatz, Frame-Verlust, Paket-Jitter, Latenz und Out-Of-Sequence (OOS) Frames, mit MAC-Flooding von MAC-Quell- und Zieladressen Smart loopback Rückführung des Ethernet-Verkehrs zum lokalen Gerät durch Tauschen der Paket-Overhead bis Layer 4 Analyse der Rx-Frame-Größe 4 64, 65–127, 128–255, 256–511, 512–1023, 1024–1518 und > 1518 Rx-Rate Leitungsnutzung (%), Ethernet-BW (Mbit/s), Frame-Rate (Frame/s) und Frame-Zählung Ethernet-Alarme Link-Down, lokaler Fehler erkannt, lokaler Fehler empfangen, Remote-Fehler, LOA Ethernalyse auf höheren Layer UDP-Prüfsumme PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	Latenzmessung beim BER-Test	
Layer 3/4 Konfiguration der IP-Quell- und Zieladresse Konfiguration von IP TOS/DSP Konfiguration des UDP-Quell- und Ziel-Ports RFC 2544 Durchsatz, Back-to-Back, Frame-Verlust und hochauflösende Latenzmessungen gemäß RFC 2544 Frame-Größe: RFC-definiert oder vom Anwender konfigurierbar EtherSAM Vereinfachter ITU-T Y.1564 Test der Konfiguration und Leistung der Dienste mit Remote Loopback oder im Dual-Tester-Modus für bidirektionale Ergebnisse Verkehrsgenerierung und Verkehrsgenerierung und Traffic-Shaping von bis zu 16 Ethernet- und IP-Verkehrsströmen, einschließlich gleichzeitiger Überwachung von Durchsatz, Frame-Verlust, Paket-Jitter, Latenz und Out-Of-Sequence (OOS) Frames, mit MAC-Flooding von MAC-Quell- und Zieladressen Smart loopback Rückführung des Ethernet-Verkehrs zum lokalen Gerät durch Tauschen der Paket-Overhead bis Layer 4 Analyse der Rx-Frame-Größe <64, 65–127, 128–255, 256–511, 512–1023, 1024–1518 und > 1518 Rx-Rate Leitungsnutzung (%), Ethernet-BW (Mbit/s), Frame-Rate (Frame/s) und Frame-Zählung Ethernet-Alarme Link-Down, lokaler Fehler erkannt, lokaler Fehler empfangen, Remote-Fehler, LOA Ethernet-Fehler FCS, Jabber, Runt, Undersize, Oversize Fehleranalyse auf höheren Layen UDP-Prüfsumme PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	Fehlereinfüge-Modus	Manuell, Rate und kontinuierlich (maximale Rate)
Layer 3/4Konfiguration von IP TOS/DSP Konfiguration des UDP-Quell- und Ziel-PortsRFC 2544Durchsatz, Back-to-Back, Frame-Verlust und hochauflösende Latenzmessungen gemäß RFC 2544EtherSAMVereinfachter ITU-T Y.1564 Test der Konfiguration und Leistung der Dienste mit Remote Loopback oder im Dual-Tester-Modus für bidirektionale ErgebnisseVerkehrsgenerierung und -überwachungVerkehrsgenerierung und Traffic-Shaping von bis zu 16 Ethernet- und IP-Verkehrsströmen, einschließlich gleichzeitiger Überwachung von Durchsatz, Frame-Verlust, Paket-Jitter, Latenz und Out-Of-Sequence (OOS) Frames, mit MAC-Flooding von MAC-Quell- und ZieladressenSmart loopbackRückführung des Ethernet-Verkehrs zum lokalen Gerät durch Tauschen der Paket-Overhead bis Layer 4Analyse der Rx-Frame-Größe< 64, 65–127, 128–255, 256–511, 512–1023, 1024–1518 und > 1518Rx-RateLeitungsnutzung (%), Ethernet-BW (Mbit/s), Frame-Rate (Frame/s) und Frame-ZählungEthernet-AlarmeLink-Down, lokaler Fehler erkannt, lokaler Fehler empfangen, Remote-Fehler, LOAEthernet-FehlerFCS, Jabber, Runt, Undersize, OversizeFehleranalyse auf höheren LayernUDP-PrüfsummePCS Lane-Alarme und -FehlerLOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	Layer 2	
Frame-Größe: RFC-definiert oder vom Anwender konfigurierbar EtherSAM Vereinfachter ITU-T Y.1564 Test der Konfiguration und Leistung der Dienste mit Remote Loopback oder im Dual-Tester-Modus für bidirektionale Ergebnisse Verkehrsgenerierung und Verkehrsgenerierung und Traffic-Shaping von bis zu 16 Ethernet- und IP-Verkehrsströmen, einschließlich gleichzeitiger Überwachung von Durchsatz, Frame-Verlust, Paket-Jitter, Latenz und Out-Of-Sequence (OOS) Frames, mit MAC-Flooding von MAC-Quell- und Zieladressen Smart loopback Rückführung des Ethernet-Verkehrs zum lokalen Gerät durch Tauschen der Paket-Overhead bis Layer 4 Analyse der Rx-Frame-Größe <64, 65–127, 128–255, 256–511, 512–1023, 1024–1518 und > 1518 Rx-Rate Leitungsnutzung (%), Ethernet-BW (Mbit/s), Frame-Rate (Frame/s) und Frame-Zählung Ethernet-Alarme Link-Down, lokaler Fehler erkannt, lokaler Fehler empfangen, Remote-Fehler, LOA Ethernet-Fehler FCS, Jabber, Runt, Undersize, Oversize Fehleranalyse auf höheren Layern UDP-Prüfsumme PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	Layer 3/4	Konfiguration von IP TOS/DSP
Tester-Modus für bidirektionale Ergebnisse Verkehrsgenerierung und - Verkehrsgenerierung und Traffic-Shaping von bis zu 16 Ethernet- und IP-Verkehrsströmen, einschließlich gleichzeitiger Überwachung von Durchsatz, Frame-Verlust, Paket-Jitter, Latenz und Out-Of-Sequence (OOS) Frames, mit MAC-Flooding von MAC-Quell- und Zieladressen Smart loopback Rückführung des Ethernet-Verkehrs zum lokalen Gerät durch Tauschen der Paket-Overhead bis Layer 4 Analyse der Rx-Frame-Größe 464, 65–127, 128–255, 256–511, 512–1023, 1024–1518 und > 1518 Rx-Rate Leitungsnutzung (%), Ethernet-BW (Mbit/s), Frame-Rate (Frame/s) und Frame-Zählung Ethernet-Alarme Link-Down, lokaler Fehler erkannt, lokaler Fehler empfangen, Remote-Fehler, LOA Ethernet-Fehler FCS, Jabber, Runt, Undersize, Oversize Fehleranalyse auf höheren Layern PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	RFC 2544	
gleichzeitiger Überwachung von Durchsatz, Frame-Verlust, Paket-Jitter, Latenz und Out-Of-Sequence (OOS) Frames, mit MAC-Flooding von MAC-Quell- und Zieladressen Smart loopback Rückführung des Ethernet-Verkehrs zum lokalen Gerät durch Tauschen der Paket-Overhead bis Layer 4 Analyse der Rx-Frame-Größe < 64, 65–127, 128–255, 256–511, 512–1023, 1024–1518 und > 1518 Rx-Rate Leitungsnutzung (%), Ethernet-BW (Mbit/s), Frame-Rate (Frame/s) und Frame-Zählung Ethernet-Alarme Link-Down, lokaler Fehler erkannt, lokaler Fehler empfangen, Remote-Fehler, LOA Ethernet-Fehler FCS, Jabber, Runt, Undersize, Oversize Fehleranalyse auf höheren Layern UDP-Prüfsumme PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	EtherSAM	
Analyse der Rx-Frame-Größe < 64, 65–127, 128–255, 256–511, 512–1023, 1024–1518 und > 1518 Rx-Rate Leitungsnutzung (%), Ethernet-BW (Mbit/s), Frame-Rate (Frame/s) und Frame-Zählung Ethernet-Alarme Link-Down, lokaler Fehler erkannt, lokaler Fehler empfangen, Remote-Fehler, LOA Ethernet-Fehler FCS, Jabber, Runt, Undersize, Oversize Fehleranalyse auf höheren Layern UDP-Prüfsumme PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	3 3	gleichzeitiger Überwachung von Durchsatz, Frame-Verlust, Paket-Jitter, Latenz und Out-Of-Sequence (OOS) Frames,
Rx-Rate Leitungsnutzung (%), Ethernet-BW (Mbit/s), Frame-Rate (Frame/s) und Frame-Zählung Ethernet-Alarme Link-Down, lokaler Fehler erkannt, lokaler Fehler empfangen, Remote-Fehler, LOA Ethernet-Fehler FCS, Jabber, Runt, Undersize, Oversize Fehleranalyse auf höheren Layern UDP-Prüfsumme PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	Smart loopback	Rückführung des Ethernet-Verkehrs zum lokalen Gerät durch Tauschen der Paket-Overhead bis Layer 4
Ethernet-Alarme Link-Down, lokaler Fehler erkannt, lokaler Fehler empfangen, Remote-Fehler, LOA Ethernet-Fehler FCS, Jabber, Runt, Undersize, Oversize Fehleranalyse auf höheren Layern UDP-Prüfsumme PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	Analyse der Rx-Frame-Größe	< 64, 65–127, 128–255, 256–511, 512–1023, 1024–1518 und > 1518
Ethernet-Fehler FCS, Jabber, Runt, Undersize, Oversize Fehleranalyse auf höheren Layern UDP-Prüfsumme PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	Rx-Rate	Leitungsnutzung (%), Ethernet-BW (Mbit/s), Frame-Rate (Frame/s) und Frame-Zählung
Fehleranalyse auf höheren Layern UDP-Prüfsumme PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	Ethernet-Alarme	Link-Down, lokaler Fehler erkannt, lokaler Fehler empfangen, Remote-Fehler, LOA
PCS Lane-Alarme und -Fehler LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit	Ethernet-Fehler	FCS, Jabber, Runt, Undersize, Oversize
	Fehleranalyse auf höheren Layern	UDP-Prüfsumme
Chow Einfügung	PCS Lane-Alarme und -Fehler	LOS, LOC-Lane, LOAML, zu hoher Skew, Inv. Marker, Pre-FEC SYMB und Pre-FEC-Bit
Skew-Generierung pro Lane mit Messbereich von u.bis 10550	Skew-Einfügung	Skew-Generierung pro Lane mit Messbereich von 0 bis 10550

DIE WICHTIGSTEN LEISTUNGSMERKMALE AUF EINEN BLICK (FORTSETZUNG)		
PCS Zuordnung der logischen Lane	Manuell und zufallsbasiert	
FEC	Generierung und Analyse von FEC-korrigierbaren und nicht korrigierbaren Fehlern, Überwachung von Local Degraded (LD) und Remote Degraded (RD) SER	
FEC-Statistik	Anzahl der Symbolfehler pro korrigierbarem Code-Wort (CW), Anzahl der Pre-FEC-Symbolfehler und Bit-Statistik, Code-Wortzählung (fehlerfreie und nicht korrigierbare CW) und Prozentsatz	
IP-Tools	Ausführung von Ping und TraceRoute	
IPv4- und IPv6-Tests	Ausführung der folgenden Tests bis 400G über IPV4 und Ipv6: RFC 2544, BERT, Verkehrsgenerierung und -überwachung, EtherSAM, Ping, TraceRoute	
Erweiterte Filterfunktionen	Einrichtung von bis zu 10 Filtern mit jeweils vier Feldern, die mit UND/ODER/NICHT-Operatoren kombinierbar sind. Für jeden Feldwert steht ebenfalls eine Maske für IPv4 und Ipv6 zur Verfügung	
Fernzugriff	Unterstützt über EXFO Remote ToolBox, Remote Desktop, VNC und EXFO Multilink für mehrere Nutzer	
Automatisierung	Für jede Anwendung wird eine breite Palette von Befehlen zur Testautomatisierung angeboten	
Berichterstellung	Die Testergebnisse werden in einen Bericht eingebunden (Formate: pdf, html, json)	

BER-TEST (UNGERAHMT)	
Musterkonfiguration	8 ungerahmte 400GAUI-8 Lanes, 4 ungerahmte 200GAUI-4 Lanes
PRBS-Muster pro Lane	Der Anwender kann an unterschiedlichen 400GAUI Lanes verschiedene PRBS-Muster konfigurieren
Prüfmuster	PRBS 2E31-1, PRBS 2E23-1, PRBS31Q, PRBS13Q, SSPRQ, Musterinvertierung
Fehlermessung	Mismatch 0, Mismatch 1, Bitfehler und Musterverlust pro 400GAUI/200GAUI Lane, Anzeige in Sekunden, Anzahl und Rate
Alarmeinfügung	Kontinuierliche Einfügung von Musterverlust und LOS pro 400GAUI/200GAUI Lane

KOHÄRENTE OPTIK	
Konformität	OIF 400ZR, IEEE 802.3cw, OpenZR+
Tx-Leistung	Konfiguration der Tx-Leistung des optischen Transceivers
Wellenlänge	Konfiguration des Transceiver-Wellenlängenrasters
Optische Kennwerte	Anzeige der folgenden optischen Kennwerte: CD (ps/nm), CFO (MHz), DGD (ps), OSNR (dB), PDL (dB), SOPCR (Krad/s), SOPMD (ps2)
Client-Konfiguration	Konfiguration des Ethernet-Client auf L2/3 und L4
Ethernet-Frame	Frame-Konfiguration des Ethernet-Client (feste Größe oder EMIX)
Ethernet-Client BERT	Bitfehler-Test mit PRBS31 und Unterstützung von Alarm-/Fehler-Überwachung und -Einfügung
FED	Aktivierung der Überwachung auf FEC Excessive Degrade (FED) Alarme
FDD	Aktivierung der Überwachung auf FEC Detected Degrade (FDD) Alarme
FEC-Alarme	Überwachung auf FED- und FDD-Alarme
FEC-Fehlerüberwachung	Überwachung von FEC-UNCOR-FR und FEC-COR-BITS
Ethernet-Alarme	Link Down, L Fault Det, L Fault Rcd, Remote Fault LOA-Alarme
Ethernet-Fehler	66B Block, FEC-UNCOR-FR, FEC-COR-BITS, FCS, Jabber, Runt, Undersize
Fehler- und Alarmeinfügung	Der Nutzer kann Schnittstellen-, Ethernet-, PCS- und BERT-Fehler und -Alarme einfügen.
DCO Tx-Alarme	Tx LOA, Tx OOA, Tx CMU LOL, Tx RefClk LOL, Tx Deskew LOL, Tx FIFO
DCO Rx-Alarme	Rx LOF, Rx LOM, Rx Demod LOL, Rx CDC LOL, Rx LOA, Rx OOA, Rx Deskew LOL, Rx FIFO

EXFO Zentrale T: +1 418 683-0211 **Gebührenfrei** +1 800 663-3936 (USA und Kanada)

EXFO bedient mehr als 2000 Kunden in über 100 Ländern. Die Adresse Ihrer nächstgelegenen EXFO-Niederlassung finden Sie auf www.EXFO.com/contact.

Die aktuellen Patentangaben finden Sie auf www.EXFO.com/patent. EXFO ist nach ISO 9001 zertifiziert und bestätigt die Qualität der aufgeführten Produkte. EXFO hat alle Anstrengungen zur Gewährleistung der Richtigkeit der in diesem Datenblatt gemachten Angaben unternommen. Wir übernehmen jedoch keine Verantwortung für Fehler und Auslassungen und behalten uns das Recht vor, das Design, die Kennwerte und die Produkte jederzeit ohne Vorankündigung zu ändern. Die in diesem Dokument verwendeten Maßeinheiten entsprechen den Normen und Praktiken des Internationalen Einheitensystems (SI). Zudem erfüllen alle von EXFO hergestellten Produkte die Anforderungen der WEEE-Richtlinie der Europäischen Union. Weitere Informationen erhalten sie auf der Website www.EXFO.com/recycle.
Bitte kontaktieren Sie EXFO, wenn Sie Fragen zu Preisen und zur Verfügbarkeit der Produkte haben oder die Telefonnummer Ihres lokalen EXFO-Händlers erhalten möchten.

Auf www.EXFO.com/specs finden Sie die jeweils neueste Fassung dieses Datenblatts.

Bei Abweichungen hat die auf der Website veröffentlichte Fassung Vorrang vor dem Druckexemplar.

FTBX88480.1GE © 2022 EXFO Inc. Alle Rechte vorbehalten Gedruckt in Kanada 11/22 ergänzt 10/2023

